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1. INTRODUCTION

Let nn denote the set of real algebraic polynomials of degree n or less. For
a given closed interval I of the real line let eel) denote the set of continuous
real-valued functions on I endowed with the uniform norm 11·11/' For a fixed
positive integer n, we define the best uniform approximation pt .1 to IE eel)
from nn by III- PoIlI = inf{111- PilI IP E nnl and the degree of approx­
imation E n(J; a, b) to I from nn on the interval 1= [a, b] by E n(J; a, b) =
III- Pt.la.blll[a.b)· We assume that n is fixed (here and throughout the paper)
and that approximation is from nn' except in Theorem 2.3, where we replace
nn by a finite dimensional Haar subspace H. The definition of best approx­
imation from H is analogous. The standard results concerning strong unicity
and Lipschitz constants can be found in Cheney [2, pp. 80-82] and are
stated in the following theorem.

THEOREM 1.1. Let IE eel). Then there are constants Af,I> 0 and
Yt,l > 0 such that

lor all g E eel), and

III- Pf,I111 ~ III- QIII - YI.I II Q- PI./III

lor all Q E nn'

(1.1 )

(1.2)

* Supported in part by NASA Grant NSG 1549-S1.
t Present address: Department of Mathematics, The University of Connecticut, Storrs,

Connecticut 06268.

247
0021-9045/81/070247-09$02.00/0

Copyright :Q 1981 by Academic Press. Inc.
All rights of reproduction in any form reserved.



248 PAUR AND ROULIER

We note that Af ,! is called a uniform Lipschitz constant and Yf,I is called a
strong unicity constant. Expression (1.2) is called the strong unicity
inequality. We further note that if Yf,I > 0 is known, then an acceptable value
of Af,I is 2/yf,I' See Cheney [2, p. 82].

In [4], Henry and Roulier investigate the existence of uniform Lipschitz
constants on all symmetric intervals of the form [-a, a] c [-1, 1] for a
given fE C[-I, 1]. Sufficient conditions on f are obtained to guarantee the
existence of a constant Af > 0 so that

(1.3)

for all g E C(J) and for all J c [-1, 1] of the form J = [-a, a]. Examples
are also given of functions fE C(I) which fail to have such Af .

In this paper we present sufficient conditions on fE C(I) to ensure the
existence of a strong unicity constant Af > 0 valid for all closed subintervals
of I. This, in turn, guarantees that (1.3) is valid for all closed subintervals J
of I.

2. THE MAIN THEOREMS

The proofs of Theorems 2.2 and 2.5 employ techniques similar to those
used in the proof of Theorem 3.1 [4, p. 228] and all of these theorems make
use of the following lemma due to Cline [3]. (See also [1].)

LEMMA 2.1. Let h E C(I) with h E 'TCn. Let P E 'TCn be the best approx­
imation to h on I and for each Chebyshev alternation E = {t}j,;t/ for h - P,
define qiE'TCn by qi(t)=sgn[h(tj)-P(t)], j=I,2,...,n+2, j*i and
i = 1,2,... , n + 2. Let Q(E) = max l <;;i<;;n+2{llqiIII}' Then there exists a
Chebyshev alternation E* for h - P so that

Ah.I ~ 2Q(E*),

where Il h,I is the Lipschitz constant for h on I and so that

where Yh,I is the strong unicity constant for h on I.

(2.1 )

(2.2)

THEOREM 2.2. If fE Cn+I[-I, 1] with pn+I)(x) >0 on [-1,1], then
there are positive constants Af and Yf so that for all closed subintervals
Jc [-1, 1],

(2.3)
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for all g E C(J), and

Ilf- pullJ ~ Ilf- QIIJ - ytll Q - pullJ

249

(2.4 )

for all QE 7Cn.

Proof If f(n+l)(x) > 0 on [-1,1] then fE 7C n for any subinterval
J c [-1,1]. Thus for a given k ~ n there exist p E 7C k and positive numbers
m and M so that

for all x E [-1, 1].
By Bernstein's Theorem (7, p. 38],

mEn(p; a, b) = En(mp; a, b) ~ En(j; a, b)

for any [a,b]c(-I,I].Let

e(p; a, b) = p(x) - Pp,la,b](X).

Then

Ile(p; a, b)llra,b] = En(p; a, b)

and

e(n+ l)(p; a, b)(x) = p(n+ I)(x).

Now Markotrs inequality [2, pp. 91, 94] implies

2n+ lk2n +2
le(n+!)(p;a,b)(x)l~ (b-at+! En(p;a,b)

for all x E [a, b]. Thus

Let Era,bl = {tj}j~} be any Chebyshev alternation for

dCa, b,f)(x) = [f - Pt,la,bJ](X).

(2.5)

(2.6)

(2.7)

If {q;}i~!2 is the set of polynomials of Lemma 2.1 for the Chebyshev alter­
nation Era,b] then

j = 1,2,..., n + 2, j -=1= i, i = 1,2,..., n + 2.
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Then the classical remainder theorem of interpolation theory [2, p. 60]
implies

d(a, b,f)(x) _ () _ d(n+ I) (a, b,f)@ wi(x)
En(f; a, b) qi X - En(f; a, b)(n + I)! '

where x, ~ E [a, b] and

n+2
wlx) = n (x - tj ).

j=1
jifd

But d(n+ I)(a, b,f)@ = fn+ I)(~). Thus, from this and (2.5) we have

So from (2.6) and (2.7) we have

Thus

M2n+ Ik2n +2

max Iqi(X)1 ~ ( 1)' + 1
l<;i<;n+2 mn+ .

and so

and

[
M2n+lk2n+2 ]-1

Y 2 + 1
t.J:7 m(n + I)!

for any Jc [-1, 1]. Our conclusions then follow.
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The strong Kolmogorov criterion [1, p. 246] states for H a finite dimen­
sional Haar subspace of C(I) and fE C(I)\H that

Yn = inf max [f(x) - Pn(x) ]llf- Pnll-1 h(x),
, hE5(H) XEE(f) , ,

where S(H) = {h E H Illhll = I} and

E(f) = {x E I Ilf(x) - Pf,I(X)1 = Ilf- Pdll}'

Pf,I is defined as in Section 1 with 7Cn replaced by H,
We assume, for Theorem 2.3, that approximation is from a finite dimen­

sional Haar subspace (see [4, p. 224 D, The first part of Theorem 2.3 (2.8) is
due to Henry and Schmidt [5] and we have proved (2.9) which is a similar
result for strong unicity constants.

THEOREM 2.3. If r is a compact subset of C(I) and r n H = ¢, then
there are constants Ar >0 and Yr >0 so that

II Pf,I - Pg,llil ~ Ar Ilf- gill

for all fE rand g E C(I), and

Ilf- Pdll ~ Ilf- QIII - Yr II Q - Pdll

for fErand QEH.

(2.8)

(2.9)

Proof of (2.9). Suppose no such Yr exists. Then there is a sequence {fn}
so that fn E rand limn-+oo Yfn = O. Let xO,n <xl,n < ... <xk,n be a Chebyshev
alternation for fn. Then the strong Kolmogorov criterion implies

where a(g,x)=[g(x)-Pg,l(x)lllg-Pg,lllll. Thus there is a sequence
{hn}~=o' hn E S(H) so that for j= 0,1,.", n

r and S(H) are compact so we can assume, without loss of generality that
limn-+oofn =fE rand limn-+oo hn= S(H). Then for j= 0,1,,,., k, lim sUPn-+oo
maxO,j<k a(fn' xj,n) h(xj,n) ~ O. Furthermore, a(fn' .) -. a(f, .) uniformly on
I. But, we may also assume limn-+oo xj,n = x j for j = 0, 1,,,., k and
Xo < XI < '" < xk. (Otherwise, if xj = xj+ I for some j, then limn-+oo xj,n =
limn-+oo Xj+ I,n = xj and limn-+oo a(fn' Xj,n) = a(f, xj), limn-+oo a(fn' Xj+ I,n) =
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a(f,xj) and limn~oo[a(fn,xj.n)·a(fn,xj+l.n)]=-I=a2(f,xj) which is
impossible.) Thus

Since a(fn' .) --+ a(f, .) uniformly on I we have

Now a(f, x j) . a(f, xj+ I) = -1, j = 0, 1,..., k - 1 so h(xj) also changes sign k
times. But then h = 0 which is a contradiction.

LEMMA 2.4. Let fE C(-I, 1]. Suppose e > 0 and there does not exist a
closed interval I c [-1, 1] so that the length of I, 1(1) ~ e and f restricted to
I is in 7rn • Then there are constants AJe) >0 and yJe) > 0 so that for every
closed interval 1 c [-1, 1] which satisfies l(l) ~ e,

(2.10)

for all g E C(l) and

for all QE 7rn •

Proof. Suppose such a Af(e) as in (2.10) does not exist. Then for each
positive integer k, there is a closed interval, lk c [-1, 1], l(lk) ~ e and
gk E C(lk) so that

(2.12)

If a yJe) as in (2.11) does not exist, then for each positive integer k there is
a closed interval lk c [-1, 1], l(lk) ~ e and h E 7rn so that

fk(x) =f (a k+ x; 1 (bk - ak») E C[-I, 1],

gk(X)=gk (ak+ x; 1 (bk-ak»)EC(-I, 1],

Pk(X)=Pk (a k + x; 1 (bk-ak») Ee[-I, 1]
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for every positive integer k. We can choose a subsequence of the J/s, call it
lJd, such that [ak., bk ] --4 [a, b] c [-1, 1]. Then lela, b]) ~ e and lid will) I)) J( )
converge to EC[-I,I], where x)=fta+((x+l)/2)(b-a)). Let
T= lid u lI}. To prove (2.10) we note that Tis sequentially compact and

I

Tn Ten =~. Thus an application of Theorem 2.3 shows that there is A> 0 so
that

IIPh.[~I.11 - Pg.[-I,IJiI[ -I.IJ ~ A Ilh - gllr -I,IJ (2.14)

for every g E C[-1, 1] and every h E T. But (2.12) implies

IIPh ;,[-I.I)-gilj,r- I ,I JII[-1.11 > kjllfkj-gk)I[-1.1 j= 1,2,... ,

where fkE T and gkE C[-I, 1] which contradicts (2.14). To prove (2.11)
I .I

we apply Theorem 2.3 with H = Ten' Then there is a constant y> 0 so that

II h - p h ,[ ~I,IIIII-I.IJ ~ II h - pll[ - I.IJ - y lip - p h ,[ - 1. 1J II[ _1.1) (2.15)

for every p E Ten and every h E T. But (2.13) implies

Ilfkj - Ptk;' [ -I.IJ II[-I,IJ > Ilfkj - A)lI-1. II - I/kj II Pkj - ptk/[ - I, II II[ -1, I!,

j = 1, 2,... , where fk. E T and Pk. E C[-1, 1] which contradicts (2.15).
J .I

THEOREM 2.5. LetfE cn+ I [-I, 1] so thatjln+l)(x)=I=OforxE [-1,0)
or x E (0, 1]. Suppose there are real numbers m, M, 0 < m ~ M and pETer'
r ~ n, so that

°~ m lin+l)(x)1 ~ Ifn+l(x)1 ~Mlp(n+l)(x)1

on [-15,15] for some 15 >O. Then there are constants At> 0 and Yt> 0 so that
for all closed intervals J c [-1, 1]

for all g E C(J) and

Ilf- Pt,J IIJ ~ Ilf- QIIJ - Yt II Q- Pf,J IIJ

(2.16)

(2.17)

for all QE Ten'

Proof. If .rn+ 1)(0) =1= ° then Theorem 2.2 applies. Thus, suppose
f(n+I)(O) =0. Since.rn+l)(x)=I=O on [-1,0) and (0, I],fETen on [a,b] for
any [a, b] c [-1, 1]. If such constants At and Yf do not exist then for every
positive integer k, there is Jk= [ak, bd c [-1, 1] and gk E C[ak, bk], Pk E Ten
so that

(2.18)
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and
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We can choose a subsequence {Jk} of the {Jk} that converge to [a, b), where
a ~ b. If a <b, choose e = b - a ~nd apply Lemma 2.4 to get contradictions
to (2.18) and (2.19). Thus a = b. If a = b i=- 0 then for j sufficiently large,
OE[ak,bk.) and /"+l)(x)i=-O for xE[ak.,bkj ). An application of

J J J

Theorem 2.2 now gives the desired results. Thus, assume a = b = O. Now
define qi,j on [akj , bk.) for f as in Lemma 2.1 for i = 1,2,..., n + 2,j = 1,2,....
An application of st~ps (3.5) through (3.21) in the proof of Theorem 1 [4,
pp. 229-231) gives (if ak <0 <bk .)

J J

Mlp(n+l)(e)1 (b -a )"+1Iq. (x)1 ~ k j k, + 1 (2.20)
I, "" m(n+ I)! max[En(p; ak , 0), En(p; 0, bk.))

J J

(2.21 )

If (2.21) holds we can follow the procedure used in Theorem 2.2 to obtain
(as in (2.7))

(2.22)

Thus (2.21) and (2.22) imply

(2.23)

If (2.20) holds and supdbk . - ak.)11 ak.1 = 00 then by passing to a subse-
J j J. J

quence we can assume that hmj-+oo(bk - ak.)/!ak.1 = 00. But then
J J J

(bk.- ak.)jbk. is bounded and we can again follow the procedure of
J J J

Theorem 2.2 to obtain

Thus (2.20) and (2.24) together imply

M2"+l r2n+2(b -a )n+1
! ()I ~ k j k( 1
qi,jX "" m(n+ 1)!bZ+ 1 +,

J

(2.24)

(2.25)
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Hence, (2.23) and (2.25) imply max,<;;i<n+21IqiJlh is bounded for all i and
}

and

But this contradicts (2.18) and (2.19) and our results follow.

3. CONCLUSIONS

The examples in [4] show that the hypotheses in the theorems of Section 2
cannot be weakened although Theorem 2.5 can be stated for a function
having n + 1 continuous derivatives whose (n + 1)st derivative has a finite
number of zeroes in [-1, 1].

A potential application of theorems such as these is in the study of
convergence of some of the adaptive curve fitting methods (e.g., see [6, 8 D.
With these techniques best approximations are computed on various subin­
tervals by Remez type algorithms. The availability of a global strong unicity
constant for all subintervals could be used to show convergence properties of
the Remez algorithm independent of the subinterval on which it is applied.
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